38 research outputs found

    Design automation algorithms for advanced lithography

    Get PDF
    In circuit manufacturing, as the technology nodes keep shrinking, conventional 193 nm immersion lithography (193i) has reached its printability limit. To continue the scaling with Moore's law, different kinds of advanced lithography have been proposed, such as multiple patterning lithography (MPL), extreme ultraviolet (EUV), electron beam lithography (EBL) and directed self-assembly (DSA). While these new technologies create enormous opportunities, they also pose great design challenges due to their unique process characteristics and stringent constraints. In order to smoothly adopt these advanced lithography technologies in integrated circuit (IC) fabrication, effective electronic design automation (EDA) algorithms must be designed and integrated into computer-aided design (CAD) tools to address the underlying design constraints and help the circuit designer to better facilitate the lithography process. In this thesis, we focus on algorithmic design and efficient implementation of EDA algorithm for advanced lithography, including directed self-assembly (DSA) and self-aligned double patterning (SADP), to conquer the physical challenges and improve the manufacturing yield. The first advanced lithography technology we explore is self-aligned double patterning (SADP). SADP has the significant advantage over traditional litho-etch-litho-etch (LELE) double patterning in its ability to eliminate overlay, making it a preferable DPL choice for the 14 nm technology node. As in any DPL technology, layout decomposition is the key problem. While the layout decomposition problem for LELE DPL has been well studied in the literature, only a few attempts have been made for the SADP layout decomposition problem. This thesis studies the SADP decomposition problem in different scenarios. SADP has been successfully deployed in 1D patterns and has several applications; however, applying it to 2D patterns turns out to be much more difficult. All previous exact algorithms were based on computationally expensive methods such as SAT or ILP. Other previous algorithms were heuristics without a guarantee that an overlay-free solution can be found even if one exists. The SADP decomposition problem on general 2D layout is proven to be NP-complete. However, we show that if we restrict the overlay, the problem is polynomial-time solvable, and present an exact algorithm to determine if a given 2D layout has a no-overlay SADP decomposition. When designing the layout decomposition algorithms, it is usually useful to take the layout structure into consideration. As most of the current IC layouts adopt a row-based standard cell design style, we can take advantage of its characteristics and design more efficient algorithms compared to the algorithms for general 2D patterns. In particular, the fixed widths of standard cells and power tracks on top and bottom of cells suggest that improvements can be made over the algorithms for general decomposition problem. We present a shortest-path based polynomial time SADP decomposition algorithm for row-based standard cell layout that efficiently finds decompositions with minimum overlay violations. Our proposed algorithm takes advantage of the fixed width of the cells and the alternating power tracks between the rows to limit the possible decompositions and thus achieve high efficiency. The next advanced lithography technology we discuss in the thesis is directed self-assembly (DSA). Block copolymer directed self-assembly (DSA) is a promising technique for patterning contact holes and vias in 7 nm technology nodes. To pattern contacts/vias with DSA, guiding templates are usually printed first with conventional lithography (193i) that has a coarser pitch resolution. Contact holes are then patterned with DSA process. The guiding templates play the role of defining the DSA patterns, which have a finer resolution than the templates. As a result, different patterns can be obtained through controlling the templates. It is shown that DSA lithography is very promising in patterning contacts/vias in 7 nm technology node. However, to utilize DSA for full-chip manufacturing, EDA for DSA must be fully explored because EDA is the key enabler for manufacturing, and the EDA research for DSA is still lagging behind. To pattern the contact layer with DSA, we must ensure that all the contacts in the layout require only feasible DSA templates. Nevertheless, the original layout may not be designed in a DSA-friendly way. However, even with an optimized library, infeasible templates may be introduced after the physical design phase. We propose a simulated-annealing (SA) based scheme to perform full-chip level contact layer optimization. According to the experimental results, the DSA conflicts in the contact layer are reduced by close to 90% on average after applying the proposed optimization algorithm. It is a current trend that industry is transiting from the random 2D designs to highly regular 1D gridded designs for sub-20 nm nodes and fabricating circuit designs with print-cut technology. In this process, the randomly distributed cuts may be too dense to be printed by single patterning lithography. DSA has proven its success in contact hole patterning, and can be easily expanded to cut printing for 1D gridded designs. Nevertheless, the irregular distribution of cuts still presents a great challenge for DSA, as the self-assembly process usually forms regular patterns. As a result, the cut layer must be optimized for the DSA process. To address the above problem, we propose an efficient algorithm to optimize cut layers without hurting the original circuit logic. Our work utilizes a technique called `line-end extension' to move the cuts and extend the functional wires without changing the original functionality of the circuit. Consequently, the cuts can be redistributed and grouped into valid DSA templates. Multiple patterning lithography has been widely adopted for today's circuit manufacturing. However, increasing the number of masks will make the manufacturing process more expensive. By incorporating DSA into the multiple patterning process, it is possible to reduce the number of masks and achieve a cost-effective solution. We study the decomposition problem for the contact layer in row-based standard cell layout with DSA-MP complementary lithography. We explore several heuristic-based approaches, and propose an algorithm that decomposes a standard cell row optimally in polynomial-time. Our experiments show that our algorithm is guaranteed to find a minimum cost solution if one exists, while the heuristic cannot or only finds a sub-optimal solution. Our results show that the DSA-MP complementary approach is very promising for the future advanced nodes. As in any lithography technique, the process variation control and proximity correction are the most important issues. As the DSA templates are patterned by conventional lithography, the patterned templates are prone to deviate from mask shapes due to process variations, which will ultimately affect the contacts after the DSA process even for the same type of template. Therefore, in order to enable the DSA technology in contact/via layer printing, it is extremely important to accurately model and detect hotspots, as well as estimate the contact pitch and locations during the verification phase. We propose a machine learning based design automation framework for DSA verification. A novel DSA model and a set of features are included. We implemented the proposed ML-based flow and performed extensive experiments on comparing the performances of learning algorithms and features. The experimental results show that our approach is much more efficient than the traditional approach, and can produce highly accurate results

    Aerodynamic load analyses of less-emission HTS maglev train in evacuated tube transport system

    Get PDF
    An evacuated tube transport (ETT) system is proposed by combining evacuated tube technology and high temperature superconducting (HTS) maglev technology in this paper. It can be predicted that this future transport mode can own the advantages of less emission, low noise, high efficiency, and suitable for high-speed or super-high-speed application. The train running at a high speed will inevitably cause complex aerodynamic load behaviors in an enclosed low-pressure tube. It further affects the real energy consumption and the fatigue life of the components. In order to explore how the aerodynamic load behaves in an ETT-HTS Maglev system, we established a three-dimension numerical calculation model based on ANSYS FLUENT software. The steady aerodynamic loads on the train’s surface and the tube’s inner surface are investigated under different pressures and different operation speeds. It is found that the aerodynamic load on the surface of the train and tube is significantly affected by the pressure inside the tube and the running speed of the train. The aerodynamic load fluctuations at the rear of the train are relatively more violent than those at the head. We also found that the impact of compression wave and expansion wave on aerodynamic loads at different positions of the tube is related to the size of the flow field space between the tube and the train. These results can provide some reference for the less-emission train body design and the whole ETT-HTS Maglev system structural strength in the near future

    Defining the Critical Hurdles in Cancer Immunotherapy

    Get PDF
    ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer

    Droplet-Routing-Aware Module Placement for Cross-referencing Biochips

    No full text
    Digital Microfluidic Biochip (DMFB) is a revolutionary technology for performing lab-on-a-chip experiments. Comparing to traditional direct-addressing design of DMFB, Cross-Referencing Biochip is a flexible design which not only helps to reduce pin number on chip but also brings down manufacturing cost. Following the generally accepted DMFB top-down design methodology, namely task scheduling, resource binding, module placement, droplet routing, previous works that focus on cross-referencing biochip routing are all based on the placement result generated for directaddressing biochip. In this paper, we present an ILP-based placement method that first utilizes the property of crossreferencing for the purpose of optimizing routing. Furthermore, one previously ignored electrode interference problem on modules (blocks) is addressed in this paper. Real-life bioassay protocol based benchmarks are used to evaluate the proposed method. Experimental results show that the placement result generated by our placer yields better routing result comparing with those from placer for direct-addressing DMFB

    Multifunctional Plasmon-Induced Transparency Devices Based on Hybrid Metamaterial-Waveguide Systems

    No full text
    In this paper, we design a multifunctional micro-nano device with a hybrid metamaterial-waveguide system, which leads to a triple plasmon-induced transparency (PIT). The formation mechanisms of the three transparent peaks have their own unique characteristics. First, PIT-I can be switched into the BIC (Friedrich–Wintge bound state in continuum), and the quality factors (Q-factors) of the transparency window of PIT-I are increased during the process. Second, PIT-II comes from near-field coupling between two bright modes. Third, PIT-III is generated by the near-field coupling between a low-Q broadband bright mode and a high-Q narrowband guide mode, which also has a high-Q transparent window due to the guide mode. The triple-PIT described above can be dynamically tuned by the gate voltage of the graphene, particularly for the dynamic tuning of the Q values of PIT-I and PIT-III. Based on the high Q value of the transparent window, our proposed structure can be used for highly sensitive refractive index sensors or devices with prominent slow light effects

    Quantitative proteomic analysis of local and systemic extracellular vesicles during Eimeria falciformis infectious cycle in the host

    No full text
    Abstract Background Extracellular vesicles (EVs) are membranous structures that are formed during pathophysiology, host-parasite interactions and parasite motility. Typically, apicomplexan-infected host cells secrete EVs which traverse local and systemic strata of the host as the parasites develop. Methods Extracellular vesicles were isolated from the caecum and serum of Eimeria falciformis-infected mice during oocyst ingestion (0 h post-infection [0 hpi]), merozont stages 1 and 2 (68 and 116 hpi), oocyst shedding (7 days post-infection [7 dpi]) and host recovery (10 dpi) and subsequently characterized and profiled by tandem mass tag (TMT). Results With the progression of E. falciformis life stages, subpopulation of EVs bearing EV biomarkers, including CD9, CD82, heat shock protein 70 (HSP70) and major histocompatibility complex (MHC) molecules, increased. A total of 860 and 1024 differentially expressed proteins were identified in serum EVs (sEVs) and caecum EVs (cEVs), respectively. Identified immune-related molecules (such as cytokines, receptors, immunoglobins, complements, hormones, inflammasomes), ion exchange and cell death-associated proteins were significantly expressed, at least during the E. falciformis first and second merozont stages. Bioinformatics assessment indicated that sEV proteins were at all time points implicated in antigen processing and presentation as well as natural killer cell-mediated cytotoxicity (68 hpi), complement activation/blood coagulation (116 hpi/10 dpi) and catabolic activities (7 dpi). In contrast, cEV proteins were involved in catabolic process, ion transport and antigen presentation (68 and 116 hpi). Host response to E. falciformis infection was similar to intestinal bacterium at 7 dpi and cell adhesion and intercellular protein transport at 10 dpi. In both systems, ferroptosis and necroptosis were common across the parasite’s infectious cycle while apoptosis occurred at 68 hpi. Conclusion The proteomic data indicate that E. falciformis infection co-opts cellular and humoral responses through EV secretions, and that, host cell death and ionic imbalance are associated with E. falciformis infection. This study offers additional insight into host-parasite interactions and host regulatory EV proteins as potential disease indicators or diagnostic molecules. Graphical Abstrac

    Plasmonic Absorption Enhancement in Elliptical Graphene Arrays

    No full text
    In this paper, we come up with a wavelength tunable absorber which is made up of periodically elliptical graphene arrays in the far-infrared and terahertz regions. Through simulation, we find that we can increase the length of long axis of the ellipse, raise the incidence angles of TM- and TE-polarization (TM- and TE-polarization indicate the direction of the incident electric field along the direction of the x and the y axis, respectively.) within certain limits, and increase the chemical potential of graphene, so as to enhance the absorption of light in the elliptical graphene arrays. We also compare the absorption spectra of the original structure and the complementary structure, and find that the absorption of the original structure is higher than that of the complementary structure. In the end, we study the changes in the absorption rate of the double layer structure of the elliptical array with the increase in the thickness of SiO2. The elliptical array structure can be applied to tunable spectral detectors, filters and sensors at far-infrared and terahertz wavelengths
    corecore